EST<u>ro</u>

OECI Oncology days 2025

Towards the agreement of minimum treatment volumes

Matthias Guckenberger

COI

Research Support: Siemens Healthineers / Varian, Astra Zeneca

Speaker honoraria: Astra Zeneca

Advisory board: Siemens Healthineers / Varian, Astra Zeneca

Topics

- Volume outcome association in radiotherapy (RT)
 - Results of Systematic Review
- Quality indicators in RT
 - Structural
 - Process
- Collective quality assurance in RT
- Minimum treatment volumes in RT guidelines and accreditation

Systematic Review and Meta-analysis (Kyaw 2023)

Aim: to assess a potential association between radiation therapy volume and patient outcomes.

- Inclusion of n=20 studies
- head and neck cancers (HNCs):
- cervical cancer:
- prostate cancer

- n=7 n=4 n=4
- High-volume radiation therapy faculties are associated with a lower chance of death compared with low-volume radiation therapy faculties
 - Pooled Hazard Ratio 0.90 (95% CI 0.87 0.94)

- Evidence of a volume outcome association in:
 - Head and neck cancer
 - Prostate cancer
 - Cervical cancer

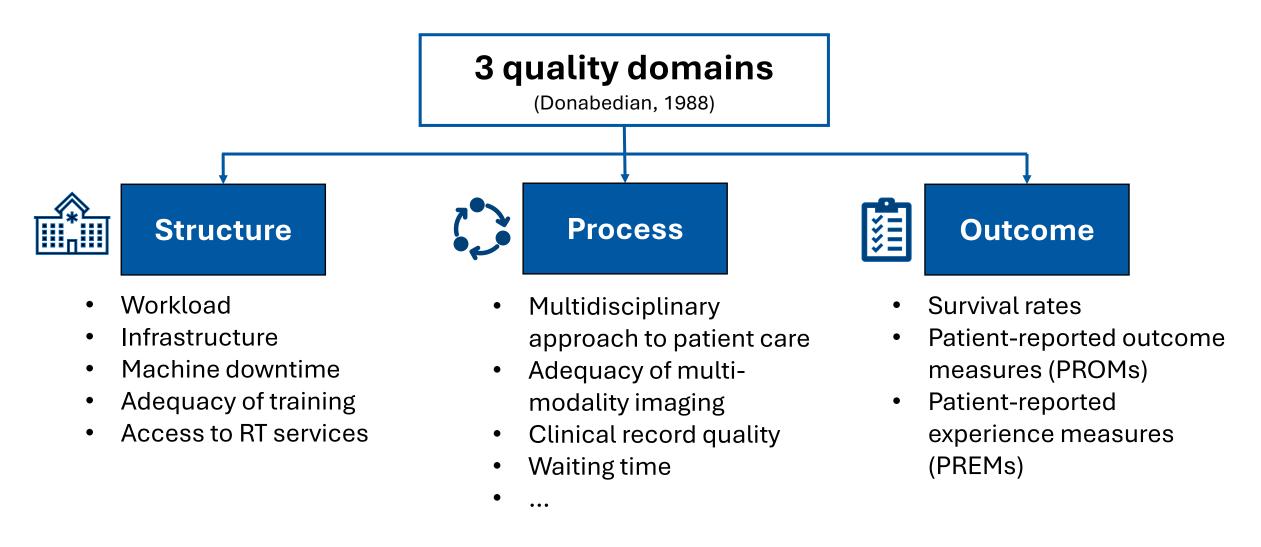
				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
1.1.1 Nasopharyngeal H	ead and Neck				
Ha et al (2019)	-0.84397	0.150747	1.6%	0.43 [0.32, 0.58]	
Lai et al (2020)	-0.16252	0.045892	5.2%	0.85 [0.78, 0.93]	
Verma et al (2018)	-0.16252	0.063859	4.2%	0.85 [0.75, 0.96]	
Yoshida et al (2018)l Subtotal (95% Cl)	-0.23572	0.069052	4.0% 1 5.0%	0.79 [0.69, 0.90] 0.74 [0.62, 0.89]	•
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =		9 = 0.0002);	l² = 85%		
1.1.2 Non-Nasopharyng	eal Head and Neck				
Chen et al (2010)	-0.23902	0.068702	4.0%	0.79 [0.69, 0.90]	
David et al (2017) Subtotal (95% CI)	-0.22565	0.029614	6.0% 10.0%	0.80 [0.75, 0.85] 0.80 [0.75, 0.84]	→
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =		= 0.86); l² =	0%		

Strongest evidence in head and neck cancer

Discussion

- Multifactorial reasons for improved outcome in high-volume radiation therapy faculties
 - Better experience in dealing with complex cases
 - Greater expertise in complex techniques
 - Larger radiation therapy workforce capacity
 - But: equitable access to services needs to be considered
- Limitations
 - Heterogeneity in cohort selection and volume definitions / categorizations
 - Limited generalizability (most studies conducted in the United States)

Discussion


- Difficulty in determining optimum volume threshold
 - Example for nasopharyngeal studies:

Study	Threshold	Definition of high volume faculty
Ha et al, 2019 (South Korea)	10 cases min. annual faculty volume over study period (24 years)	≥ 10 cases per year
Lai et al, 2020 (Taiwan)	1 st quartile total volume over study period (17 years)	≥ 86 cases over study period
Verma et al, 2018 (USA)	80 th percentile total volume over study period (10 years)	≥ 11 cases over study period
Yoshida et al, 2018 (USA)	95 th percentile min. annual faculty volume over study period (11 years)	≥ 3.36 cases per year

Difficulty in quantification of experience in radiotherapy

Quality indicators in RT

Universität

Zürich^{vz}

niversitäts

Spital Zürich

ESTRO

Salma NS et al. Structural Quality Indicators in Radiation Oncology: Insights and Implications. *Clin Oncol*. 2025 Manjali J et al. Bridging Gaps in Cancer Care With Quality Indicators in Radiotherapy. *Clin Oncol*. 2025 Gabriele P et al. Quality indicators in the intensity modulated/image-guided radiotherapy era. *Crit Rev Oncol Hematol*. 2016

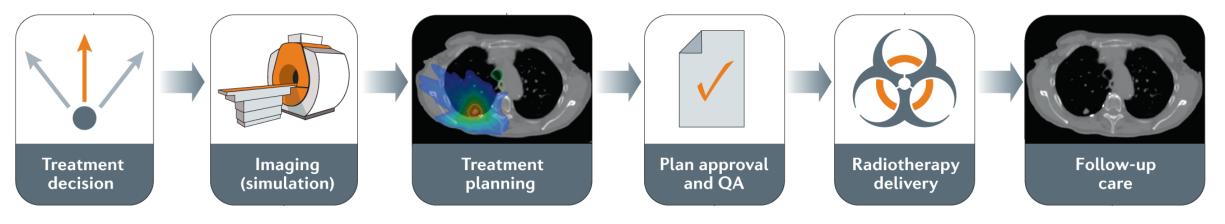
Quality indicators in RT: Structure

- Workload
- Infrastructure
- Machine downtime
- Adequacy of training
- Access to RT services

Workload =

____ Total number of patients treated in 1 year

Number of workers


- Radiooncologists
- Medical physicists
- Radiotherapy technologists

Quality indicators in RT: Process

Multistep and peer-group process

• Almost completely digitalized

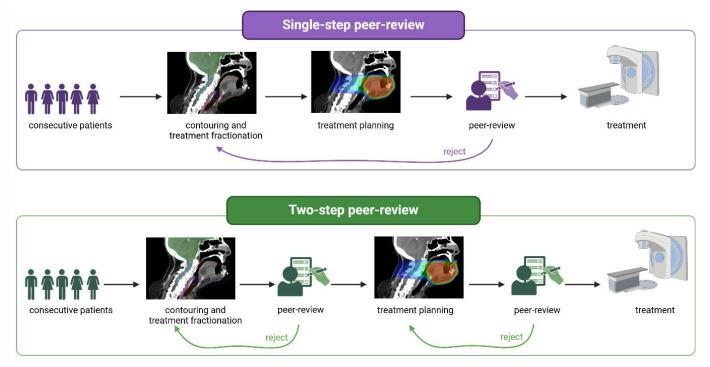
Universität

Zürich^{⊍zн}

ESTRO

- Dedicated infrastructure
- Al supported

Universitäts


Spital Zürich

- Radiation oncologists
- Medical physicist
- Dosimetrist
- Therapist
- Administrative staff

Quantification of experience in RT: Process & multidisciplinary team

Quality indicators in RT: Process

A prospective cohort study to evaluate peer-review in radiation oncology

Two-step peer-review

- Better treatment quality
 - Contour and fractionation changes
 - 16% vs. 5% (p<0.001)
 - → Dose distribution changes
 1.1% vs 1.9% (p=0.15)
- Participant preference
 - ↑ Teaching opportunities
 - Consistency in the department
 - ↑ Sense of security

Median 16.5 participants at peer-review rounds

Quality assurance in Radiotherapy

Surgery

Collective experience

Multi-step procedure with review rounds

- Low entry threshold for trainees
- Fast learning due to ↑ teaching opportunities
- \rightarrow Robustness against individual errors

Individual experience

Single-step live performance

- High entry threshold for trainees
- Vulnerability to individual errors
- → Surgeon-based treatment volumes

RT: Center-based definition of treatment volume

Quality assurance

Radiotherapy	v/s	Surgery
Collective	Experience	B Individual
Multi-step & review rounds	Procedure	Single-step live performance
Low ↑ teaching opportunities	Entry threshold for trainees	High
Low	Vulnerability to individual errors	High
Center-based	Definition of minimum treatment volumes	Surgeon-based

Treatment Volume in Radiotherapy guidelines

ESTRO guidelines

- No recommendations for minimal treatment volume so far
- Recommendations for centralized RT treatment, emphasized in rare / pediatric cancer

NCCN guidelines

- No recommendations for minimal treatment volume so far
- Recommendation for RT treatment in experienced / high-volume centers
 - For several cancer entities
 - Most emphasized for SBRT and RT in tumor recurrence

Treatment planning in multidisciplinary teams and experienced centers

Treatment Volume in RT Center Accreditation

German Cancer Society – Deutsche Krebsgesellschaft DKG

Catalogue of Requirements for Radio-oncology

Centre	Number of radiotherapy treatments per year and centre		
	≥ 800 patients (≥ 200 patients in the Oncology Centre)		
Oncology Centres	Clinical site of a network with 1 accelerator ≥ 400 patients (≥ 100 patients in the Oncology Centre)		
Anal Cancer	≥ 6 patients		
Head and Neck	≥ 30 patients		
Paediatric Cancer	Number must be recorded		
Lung Cancer	Primary treatment: ≥ 50 patients (≥ 5 patients extracranial SBRT) Total number: ≥ 100 patients		
Prostate Cancer	≥ 50 patients (for 25-49 cases: at least 75 patients in the 5 years prior to the audit)		
Soft Tissue Sarcoma	≥ 20 patients		

Minimum treatment volumes for oncology / cancer centers

Treatment Volume in RT Center Accreditation

German Cancer Society – Deutsche Krebsgesellschaft DKG

Catalogue of Requirements for Radio-oncology

Lung cancer: Technique	≥ 20 extra- and intracranial SBRT of any indication/year		
Brachytherapy	≥ 100 therapies within the last 5 years		
Systemic Tumour Therapy by Radio-oncology	≥ 50 systemic tumour therapies in combination with radiotherapy for solid tumours (unless specified below)		
	Lung cancer	≥ 30 patients	
	Head and Neck cancer	≥ 15 patients	
	Soft Tissue Sarcoma	≥ 30 patients	

Minimum treatment volumes for treatment methods

Treatment Volume in RT Center Accreditation

Organisation of European Cancer Institutes OECI

Accreditation and Designation – Quantitative Questionnaire for Radiotherapy Treatment

- Information on **department certification** (standard of certification, international/national)
- Data related to the radiotherapy department use of treatment machines
 - Hours of operation of linear accelerators per week
 - Total number of radiotherapy treatment courses per year no organ-specific numbers
 - Number of IMRT/VMAT treatment courses per year
 - Number of stereotactic treatment courses per year no specific number for lung cancer
 - Number IGRT treatment courses per year
 - Number of CT/MR based brachytherapy procedures per year
 - Lacking: Number of radio-chemotherapy courses per year

Declaration of specific treatment courses per year

Towards the agreement ...

... of minimal treatment volumes in Radiotherapy

- Evidence for volume outcome association in Radiotherapy
 - Heterogeneous volume thresholds in literature
- Multistep and peer-group approach
 - Requirement for center-based numbers
- Current definition of minimal treatment volumes
 - For Radiotherapy center accreditation (DKG)
 - Not yet in Radiotherapy guidelines (ESTRO and NCCN)

